본문 바로가기
수학/선형대수학

선형대수학 요약

by pagehit 2021. 4. 24.
반응형

선형 대수학(Linear algebra)은 선형 방정식(linear equation)에 대해 연산하는 방법을 제시해 주며, 아래와 같은 형식을 취한다.

4x15x2=132x1+3x2=9\begin{aligned}4x_1 - 5x_2 &= -13 \\ -2x_1 + 3x_2 &= 9\end{aligned}

두 개의 변수와 두 개의 방정식으로 표현된 위의 선형 시스템을 행렬(matrix)을 사용해서 간단하게 표기할 수 있다.

Ax=bAx = b

A=[45 23],b=[139]A = \begin{bmatrix}4&-5  \\-2&3\end{bmatrix}, b = \begin{bmatrix}-13\\9\end{bmatrix}

 

표기법

ARm×nA \in \Reals^{m \times n}은 각 원소가 실수인 mm개의 행(row)과 nn개의 열(column)을 가진 행렬

xRnx \in \Reals^nnn개의 원소를 가지는 벡터. 일반적으로 nn개의 행과 11개의 열을 가진 행렬을 nn차원 벡터라고 말하며, 이를 열벡터(column vector)라 한다. 행벡터(row vector)는 11개의 행과 nn개의 열을 가지며, xTx^T로 표기한다.

A=[a11a12a1na21a22a2nam1am2amn]A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}

A=[a1a2an]A = \begin{bmatrix} \color{#8FCACA} \rule[-3pt]{1ex}{3ex} & \color{#CBAACB} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \\ \color{#8FCACA} a^1 & \color{#CBAACB} a^2 & \cdots & \color{#FF968A} a^n \\ \color{#8FCACA} \rule[-3pt]{1ex}{3ex} & \color{#CBAACB} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \end{bmatrix}

A=[ a1T  a2T  amT  ]A = \begin{bmatrix} \color{#55CBCD} \rule{4ex}{1ex}  a^{T}_{1}  \rule{4ex}{1ex} \\ \color{#F3B0C3} \rule{4ex}{1ex}  a^{T}_{2}  \rule{4ex}{1ex} \\ \vdots \\ \color{#EADA52} \rule{4ex}{1ex}  a^{T}_{m}  \rule{4ex}{1ex}\end{bmatrix}

 

행렬 곱셈

행렬 ARm×nA \in \Reals^{m \times \color{#FF968A}{n}}BRn×pB \in \Reals^{\color{#FF968A}{n} \color{black}\times p}의 곱은 다음과 같다.

C=ABRm×pC = AB \in \Reals^{m \times p}

Cij=k=1nAikBkjC_{ij} = \sum^{n}_{k=1} A_{ik}B_{kj}

 

벡터와 벡터 곱(Vector-Vector products)

두 개의 벡터 x,yRnx, y \in \Reals^n가 주어졌을 때, xTyx^{T}y를 내적(inner product or dot product)이라고 부른다.

xTyR=[x1x2xn][y1y2yn]=i=1nxiyix^{T}y \in \Reals = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum^{n}_{i=1} x_{i}y_{i}

두 개의 벡터 xRm,yRnx \in \Reals^m, y \in \Reals^n가 주어졌을 때, xyTRm×nxy^{T} \in \Reals^{m \times n}을 벡터의 외적(outer product)이라 한다.

xyTRm×n=[x1x2xm][y1y2yn]=[x1y1x1y2x1ynx2y1x2y2x2ynxmy1xmy2xmyn]xy^{T} \in \Reals^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n}\\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}

A=[xxx]=[x1x1x1x2x2x2xmxmxm]=[x1x2xm][111]=x1TA = \begin{bmatrix} \color{#FF968A} \rule[-3pt]{1ex}{3ex} & \color{#FF968A} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \\ \color{#FF968A} x & \color{#FF968A} x & \cdots & \color{#FF968A} x \\ \color{#FF968A} \rule[-3pt]{1ex}{3ex} & \color{#FF968A} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{1} & \cdots & x_{1}\\ x_{2} & x_{2} & \cdots & x_{2}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m} & x_{m} & \cdots & x_{m} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} = x1^{T}

 

행렬 벡터 곱(Matrix-Vector products)

행렬 ARm×nA \in \Reals^{m \times n}와 벡터 xRnx \in \Reals^n가 주어졌을 때, 곱은 벡터 y=AxRmy = Ax \in \Reals^m이다. 이때, 행렬과 벡터의 곱을 여러 가지 방법으로 표기할 수 있다.

행렬 AA를 행으로 쓰면 곱은 다음과 같이 쓸 수 있다. 즉 yyii번째 요소는 행렬 AAii번째 행과 벡터 xx의 내적과 같다.

y=Ax=[ a1T  a2T  amT  ]x=[a1Txa2TxamTx ]y = Ax = \begin{bmatrix} \color{#55CBCD} \rule{4ex}{1ex}  a^{T}_{1}  \rule{4ex}{1ex} \\ \color{#F3B0C3} \rule{4ex}{1ex}  a^{T}_{2}  \rule{4ex}{1ex} \\ \vdots \\ \color{#EADA52} \rule{4ex}{1ex}  a^{T}_{m}  \rule{4ex}{1ex}\end{bmatrix} x = \begin{bmatrix} a^{T}_{1}x \\ a^{T}_{2}x \\ \vdots \\ a^{T}_{m}x \end{bmatrix}

행렬 AA를 열의 형태로 써서 다음과 같이 표현할 수 있다.

y=Ax=[a1a2an][x1x2xm]=[a1]x1+[a2]x2++[an]xmy = Ax = \begin{bmatrix} \color{#8FCACA} \rule[-3pt]{1ex}{3ex} & \color{#CBAACB} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \\ \color{#8FCACA} a^1 & \color{#CBAACB} a^2 & \cdots & \color{#FF968A} a^n \\ \color{#8FCACA} \rule[-3pt]{1ex}{3ex} & \color{#CBAACB} \rule[-3pt]{1ex}{3ex} & & \color{#FF968A} \rule[-3pt]{1ex}{3ex} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} \color{#8FCACA} \rule[-3pt]{1ex}{3ex} \\ \color{#8FCACA} a^1 \\ \color{#8FCACA} \rule[-3pt]{1ex}{3ex} \end{bmatrix} x_1 + \begin{bmatrix} \color{#CBAACB} \rule[-3pt]{1ex}{3ex} \\ \color{#CBAACB} a^2 \\ \color{#CBAACB} \rule[-3pt]{1ex}{3ex} \end{bmatrix} x_2 + \cdots + \begin{bmatrix} \color{#FF968A} \rule[-3pt]{1ex}{3ex} \\ \color{#FF968A} a^n \\ \color{#FF968A} \rule[-3pt]{1ex}{3ex} \end{bmatrix} x_m

즉, yy는 행렬 AA의 열에 대한 선형 조합(linear combination)이며, 선형 조합의 계수는 xx의 요소들로 주어진다.

#FF968A

반응형

댓글